Что такое аммиак? Формула и свойства аммиака
Аммиак – соединение, являющееся важнейшим источником азота для живых организмов, а также нашедшее применение в различных отраслях промышленности. Что такое аммиак, каковы его свойства? Давайте разберемся.
Что такое аммиак: основные характеристики
Аммиак (нитрид водовода) – соединение азота с водородом, имеющее химическую формулу NH3. Форма молекулы напоминает тригональную пирамиду, в вершине которой расположен атом азота.
Аммиак представляет собой газ, не имеющий цвета, но обладающий резким специфическим запахом. Плотность аммиака почти в два раза меньше, чем плотность воздуха. При температуре 15 o C она составляет 0,73 кг/м 3 . Плотность аммиака жидкого в нормальных условиях равна 686 кг/м 3 . Молекулярная масса вещества — 17,2 г/моль. Отличительной особенностью аммиака является его высокая растворимость в воде. Так, при температуре 0 °C ее значение достигает около 1200 объемов в объеме воды, при 20 °C – 700 объемов. Раствор «аммиак — вода» (аммиачная вода) характеризуется слабощелочной реакцией и довольно уникальным свойством по сравнению с другими щелочами: с увеличением концентрации плотность снижается.
Как образуется аммиак?
Что такое аммиак в организме человека? Это конечный продукт азотистого обмена. Большую его часть печень конвертирует в мочевину (карбамид) – менее токсичное вещество.
Аммиак в природных условиях образуется в результате разложения органических соединений, содержащих азот. Для использования в промышленности это вещество получают искусственным путем.
Получение аммиака в промышленных и лабораторных условиях
В промышленных условиях аммиак получают путем каталитического синтеза из азота и водорода:
Процесс получения вещества проводят при температуре 500 °C и давлении 350 атм. В качестве катализатора используется пористое железо. Полученный аммиак удаляется охлаждением. Азот и водород, которые не прореагировали, возвращаются на синтез.
В лабораторных условиях аммиак получают в основном путем слабого нагревания смеси, состоящей из хлорида аммония и гашеной извести:
Для осушения готовое соединение пропускается через смесь извести и едкого натра. Довольно сухой аммиак можно получить путем растворения в нем металлического натрия и последующей перегонки.
Где используется аммиак?
Нитрид водорода широко применяется в различных отраслях промышленности. Огромные его количества используются для производства азотной кислоты и различных удобрений (мочевина, нитрат аммония и др.), полимеров, синильной кислоты, соды, аммониевых солей и других видов продукции химического производства.
В легкой промышленности свойства аммиака применяют при очистке и окрашивании таких тканей, как шелк, шерсть и хлопок. В сталелитейном производстве он используется для увеличения твердости стали путем насыщения ее поверхностных слоев азотом. В нефтехимической промышленности при помощи нитрида водорода нейтрализуют кислотные отходы.
Благодаря своим термодинамическим свойствам жидкий аммиак используется в качестве хладагента в холодильном оборудовании.
Раствор нитрида водорода (нашатырный спирт) применяется в медицине для выведения из обморочного состояния, стимуляции рвоты, для обработки рук медперсонала, при укусах насекомых и пр.
Некоторые химические свойства аммиака
Нитрид водорода характеризуется довольно высокой химической активностью и способен вступать в реакции со многими веществами.
При взаимодействии аммиака с кислотами образуются соответствующие соли аммония. Так, к примеру, в результате реакции с азотной кислотой образуется аммиачная селитра:
При взаимодействии с HCl образуется хлорид аммония:
Соли аммония представляют собой твердые кристаллические вещества, разлагающиеся в воде и обладающие свойствами, присущими солям металлов. Растворы соединений, образованных в результате взаимодействия аммиака и сильных кислот, имеют слабокислую реакцию.
За счет атомов азота нитрид водорода является активным восстановителем. Восстановительные свойства его проявляются при нагревании. При горении в атмосфере кислорода он образует азот и воду. В присутствии катализаторов взаимодействие с кислородом дает оксид азота. Нитрид водорода имеет способность восстанавливать металлы из оксидов.
Галогены в результате реакции с аммиаком образуют галогениды азота – опасные взрывчатые вещества. При взаимодействии с карбоновыми кислотами и их производными нитрид водорода образует амиды. В реакциях с углем (при 1000 °С) и метаном он дает синильную кислоту.
С ионами металлов аммиак образует аминокомплексы, или аммиакаты (комплексные соединения), имеющие характерную особенность: атом азота всегда связан с тремя атомами водорода. В результате комплексообразования меняется окраска вещества. Так, к примеру, голубой раствор медного купороса при добавлении нитрида водорода приобретает интенсивный сине-фиолетовый цвет. Многие из аминокомплексов обладают достаточной устойчивостью. Благодаря этому они могут быть получены в твердом виде.
В жидком аммиаке хорошо растворяются как ионные, так и неполярные неорганические и органические соединения.
Санитарно-гигиенические характеристики
Аммиак относят к четвертому классу опасности. Предельно допустимая максимально-разовая концентрация (ПДК) в воздухе населенных пунктов равна 0,2 мг/м 3 , среднесуточная – 0,04. В воздухе рабочей зоны содержание аммиака не должно быть выше 20 мг/м³. При таких концентрациях запах вещества не ощущается. Фиксироваться человеческим обонянием он начинает при 37 мг/м³. То есть если запах аммиака ощущается, это означает, что допустимые нормы нахождения вещества в воздухе значительно превышены.
Влияние на человеческий организм
Что такое аммиак с точки зрения воздействия на человека? Это токсикант. Его относят к веществам, способным оказывать удушающее и нейротропное действие, ингаляционное отравление которыми может привести к отеку легких и поражению нервной системы.
Аммиачные пары раздражающе воздействуют на кожные покровы, слизистые оболочки глаз и органов дыхания. Концентрация вещества, при которой проявляется раздражение зева, составляет 280 мг на куб. метр, глаз − 490 мг на куб. метр. В зависимости количества нитрида водорода в воздухе могут возникать першение в горле, затрудненность дыхания, приступы кашля, боль в глазах, обильное слезотечение, химический ожог роговицы, потеря зрения. При содержании аммиака 1,5 г на куб. метр в течение часа развивается токсический отек легких. При контакте жидкого аммиака и его растворов (в высоких концентрациях) с кожей возможны покраснения, зуд, жжение, дерматиты. Так как сжиженный нитрид водовода при испарении поглощает тепло, возможны обморожения различной степени.
Симптомы отравления аммиаком
Отравление данным токсикантом может вызывать снижение слухового порога, тошноту, головокружение, головную боль и пр. Возможны изменения в поведении, в частности сильное возбуждение, бред. Проявление симптомов в ряде случаев имеет прерывистый характер. Они могут на некоторое время прекращаться, а потом возобновляться с новой силой.
Учитывая все возможные последствия воздействия аммиака, очень важно соблюдать меры предосторожности при работе с данным веществом и не допускать превышения его концентрации в воздушной среде.
Источник
Аммиак
Аммиак, NH3, простейшее химическое соединение азота с водородом. Один из важнейших продуктов химической промышленности; синтез аммиака из азота воздуха и водорода — основной метод получения т. н. связанного азота. В природе аммиак образуется при разложении азотсодержащих органических веществ. Название «аммиак» — сокращенное от греч. hals ammoniakos или лат. sal ammoniacus; так назывался нашатырь (аммония хлорид), который получали в оазисе Аммониум (ныне Сива) в Ливийской пустыне.
Физические и химические свойства. Аммиак — бесцветный газ с резким удушливым запахом и едким вкусом. Плотность газообразного аммиака при 0°С и 101,3 кн/м 2 (760 мм рт. ст.) 0,7714 кг/м 3 , tкип —33,35°С, tпл —77,70°С, tкpит 132,4°С, давление критическое 11,28 Мн/м 2 (115,0 кгс/см 2 ), плотность критическая 235 кг/м 3 , теплота испарения 23,37 кдж/моль (5,581 ккал/моль). Сухая смесь аммиака с воздухом способна взрываться; границы взрывчатости при комнатной температуре лежат в пределах 15,5—28% аммиака, с повышением температуры границы расширяются. Аммиак хорошо растворим в воде (при 0°С объём воды поглощает около 1200 объёмов аммиака, при 20 °С — около 700 объёмов аммиака). При 20°С и 0,87 Мн/м 2 (8,9 кгс/см 2 ) аммиак легко переходит в бесцветную жидкость с плотностью 681,4 кг/м 3 , сильно преломляющую свет. Подобно воде, жидкий аммиак сильно ассоциирован, главным образом за счёт образования водородных связей. Жидкий аммиак практически не проводит электрический ток. Жидкий аммиак — хороший растворитель для очень большого числа органических, а также для многих неорганических соединений. Твёрдый аммиак — бесцветные кубические кристаллы.
Молекула аммиака имеет форму правильной тригонометрической пирамиды с атомом N в вершине; углы между связями H—N—H 108°, межатомные расстояния H—N—H 1,015, H—H 1,64.
Интересным свойством молекул аммиака является их способность к структурной инверсии, т. е. к «выворачиванию наизнанку» путём прохождения атома азота сквозь образованную атомами водорода плоскость основания пирамиды. Инверсия связана с излучением строго определённой частоты, на основе чего была создана аппаратура для очень точного определения времени (молекулярные генераторы). Такие «молекулярные часы» позволили, в частности, установить, что продолжительность земных суток ежегодно возрастает на 0,43 мсек. Дипольный момент молекулы аммиака равен 1,43D. Благодаря отсутствию неспаренных электронов аммиак диамагнитен.
Аммиак — весьма реакционноспособное соединение. За счёт наличия неподелённой электронной пары у атома N особенно характерны и легко осуществимы для аммиака реакции присоединения. Наиболее важна реакция присоединения протона к молекуле аммиака, ведущая к образованию иона аммония NH + 4, который в соединениях с анионами кислот ведёт себя подобно ионам щелочных металлов. Такие реакции происходят при растворении аммиака в воде с образованием слабого основания — аммония гидроокиси NH4OH, а также при непосредственном взаимодействии аммиака с кислотами. Распространённый тип реакций присоединения — образование аммиакатов при действии газообразного или жидкого аммиака на соли. Для аммиака характерны также реакции замещения. Щелочные и щёлочноземельные металлы реагируют с жидким и газообразным аммиаком, образуя в зависимости от условий нитриды (Na3N) или амиды (NaNH2). Аммиак реагирует также с серой, галогенами, углем, CO2 и др. К окислителям в обычных условиях аммиак довольно устойчив, однако, будучи подожжён, он горит в атмосфере кислорода, образуя воду и свободный азот. Каталитическим окислением аммиака получают окись азота, превращаемую затем в азотную кислоту.
Получение и применение. В лабораторных условиях аммиак может быть получен вытеснением его сильными щелочами из аммониевых солей по схеме: 2NH4CI + Ca(OH)2 = 2NH3 + CaCl2 + 2H2O. Старейший промышленный способ получения аммиака — выделение его из отходящих газов при коксовании угля. Основной современный способ промышленного получения аммиака — синтез из элементов — азота и водорода, предложенный в 1908 немецким химиком Ф. Габером.
Наиболее распространённым и экономичным методом получения технологического газа для синтеза аммиака является конверсия углеводородных газов. Исходным сырьём в этом процессе служит природный газ, а также попутные нефтяные газы, газы нефтепереработки, остаточные газы производства ацетилена. Сущность конверсионного метода получения азото-водородной смеси состоит в разложении при высокой температуре метана и его гомологов на водород и окись углерода с помощью окислителей — водяного пара и кислорода. К конвертированному газу при этом добавляют атмосферный воздух или воздух, обогащенный кислородом. Синтез аммиака из простых веществ
протекает с выделением тепла и уменьшением объёма. Наиболее благоприятными, с точки зрения равновесия, условиями образования аммиака являются возможно более низкая температура и возможно более высокое давление. Без катализаторов реакция синтеза аммиака вообще не происходит. В промышленности для синтеза аммиака используют исключительно железные катализаторы, получаемые восстановлением сплавленных окислов железа Fe3O4 с активаторами (Al2O3, K2O, CaO, SiO2, а иногда и MgO). Важный этап процесса синтеза — очистка газовой смеси от каталитических ядов (к ним относятся вещества, содержащие S, O2, Se, P, As, пары воды, CO и др.).
Способы производства синтетического аммиака различаются по применяемому давлению: системы низкого (10—15 Мн/м 2 ), среднего (25—30 Мн/м 2 ) и высокого (50—100 Мк/л 2 ) давления. Наиболее распространены системы среднего давления (30 Мн/м 2 и 500°С) (1 Мн/м 2 (10 кгс/см 2 ). Для увеличения степени использования газа в современных системах синтеза аммиака применяют многократную циркуляцию азото-водородной смеси — круговой аммиачный цикл (см. рис.).
Свежий газ (азото-водородная смесь) и непрореагировавшие, т. н. циркуляционные газы поступают сначала в фильтр 1, где они очищаются от посторонних примесей, затем в межтрубное пространство конденсационной колонны 2, отдавая своё тепло газу, движущемуся по трубкам колонны. Далее газы проходят через испаритель 3, в котором происходят их дальнейшее охлаждение и конденсация аммиака, увлечённого циркуляционными газами. Охлажденная смесь газов и сконденсировавшийся аммиак из испарителя направляются в разделительную часть (сепаратор) конденсационной колонны, где жидкий аммиак отделяется и как готовый продукт выводится по трубе в резервуар 9. Газообразный аммиак, выходящий из испарителя, проходя брызгоуловитель 4, освобождается от капель жидкого аммиака и направляется в цех переработки или в холодильную установку на сжижение. Газы, освобожденные от аммиака, из сепаратора поступают в колонну синтеза 5. Колонна синтеза внутри имеет катализаторную коробку с трубчатой или полочной насадкой и теплообменник. Газы, проходя через колонну синтеза, реагируют между собой; выходящая из колонны газовая смесь содержит 15 — 20% аммиака. Далее эти газы поступают в конденсатор 6, где и происходит сжижение аммиака Жидкий аммиак отделяется в сепараторе 7 и поступает в резервуар 9, а непрореагировавшие газы подаются циркуляционным насосом 8 в фильтр 1 для смешения со свежей азото-водородной смесью.
Аммиак используется для получения азотной кислоты, азотсодержащих солей, мочевины, синильной кислоты, соды по аммиачному методу. Так как жидкий аммиак имеет большую теплоту испарения, то. он служит рабочим веществом холодильных машин. Жидкий аммиак и его водные растворы применяют как жидкие удобрения. Большие количества аммиака идут на аммонизацию суперфосфата и туковых смесей.
Аммиак ядовит. Он сильно раздражает слизистые оболочки. Острое отравление аммиаком вызывает поражения глаз и дыхательных путей, одышку, воспаление лёгких. Предельно допустимой концентрацией аммиака в воздухе производственных помещений считается 0,02 г/м 3 . Аммиак хранят в стальных баллонах, окрашенных в жёлтый цвет, с чёрной надписью — аммиак.
Источник
Аммиак: получение и свойства
В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:
Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3 о :
У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:
Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.
Способы получения аммиака
В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поскольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.
Например, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:
Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.
Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.
Еще один лабораторный способ получения аммиака – гидролиз нитридов.
Например, гидролиз нитрида кальция:
В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.
Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.
Более подробно про технологию производства аммиака можно прочитать здесь.
Химические свойства аммиака
1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:
Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.
Видеоопыт растворения аммиака в воде можно посмотреть здесь.
2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.
Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):
Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:
Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.
В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.
NH3 + HCl → NH4Cl
Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.
3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.
Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):
4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – аминокомплексы.
Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):
Гидроксид меди (II) растворяется в избытке аммиака:
5. Аммиак горит на воздухе, образуя азот и воду:
Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:
6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.
Например, жидкий аммиак реагирует с натрием с образованием амида натрия:
Также возможно образование Na2NH, Na3N.
При взаимодействии аммиака с алюминием образуется нитрид алюминия:
2NH3 + 2Al → 2AlN + 3H2
7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.
Например, аммиак окисляется хлором до молекулярного азота:
Пероксид водорода также окисляет аммиак до азота:
Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.
Например, оксид меди (II) окисляет аммиак:
2NH3 + 3CuO → 3Cu + N2 + 3H2O
Источник
Аммиак
NH3, простейшее химическое соединение азота с водородом. Один из важнейших продуктов химической промышленности; синтез А. из азота воздуха и водорода — основной метод получения т. н. связанного Азота. В природе А. образуется при разложении азотсодержащих органических веществ. Название «А.» — сокращенное от греч. hals ammoniakos или лат. sal ammoniacus; так назывался нашатырь (Аммония хлорид), который получали в оазисе Аммониум (ныне Сива) в Ливийской пустыне.
Физические и химические свойства. А. — бесцветный газ с резким удушливым запахом и едким вкусом. Плотность газообразного А. при 0°С и 101,3 кн/м 2 (760 мм рт. ст.) 0,7714 кг/м 3 , tкип —33,35°С, tпл —77,70°С, tкpит 132,4°С, давление критическое 11,28 Мн/м 2 (115,0 кгс/см 2 ), плотность критическая 235 кг/м 3 , теплота испарения 23,37 кдж/моль (5,581 ккал/моль). Сухая смесь А. с воздухом способна взрываться; границы взрывчатости при комнатной температуре лежат в пределах 15,5—28% А., с повышением температуры границы расширяются. А. хорошо растворим в воде (при 0°С объём воды поглощает около 1200 объёмов А., при 20 °С — около 700 объёмов А.). При 20°С и 0,87 Мн/м 2 (8,9 кгс/см 2 ) А. легко переходит в бесцветную жидкость с плотностью 681,4 кг/м 3 , сильно преломляющую свет. Подобно воде, жидкий А. сильно ассоциирован, главным образом за счёт образования водородных связей (См. Водородная связь). Жидкий А. практически не проводит электрический ток. Жидкий А. — хороший растворитель для очень большого числа органических, а также для многих неорганических соединений. Твёрдый А. — бесцветные кубические кристаллы.
Молекула А. имеет форму правильной тригонометрической пирамиды с атомом N в вершине; углы между связями H—N—H 108°, межатомные расстояния H—N—H 1,015Å, H—H 1,64Å.
Интересным свойством молекул А. является их способность к структурной инверсии, т. е. к «выворачиванию наизнанку» путём прохождения атома азота сквозь образованную атомами водорода плоскость основания пирамиды. Инверсия связана с излучением строго определённой частоты, на основе чего была создана аппаратура для очень точного определения времени (молекулярные генераторы). Такие «молекулярные часы» позволили, в частности, установить, что продолжительность земных суток ежегодно возрастает на 0,43 мсек. Дипольный момент молекулы А. равен 1,43D. Благодаря отсутствию неспаренных электронов А. диамагнитен.
А. — весьма реакционноспособное соединение. За счёт наличия неподелённой электронной пары у атома N особенно характерны и легко осуществимы для А. реакции присоединения. Наиболее важна реакция присоединения протона к молекуле А., ведущая к образованию иона аммония (См. Аммоний) NH + 4, который в соединениях с анионами кислот ведёт себя подобно ионам щелочных металлов. Такие реакции происходят при растворении А. в воде с образованием слабого основания — аммония гидроокиси (См. Аммония гидроокись) NH4OH, а также при непосредственном взаимодействии А. с кислотами. Распространённый тип реакций присоединения — образование аммиакатов (См. Аммиакаты) при действии газообразного или жидкого А. на соли. Для А. характерны также реакции замещения. Щелочные и щёлочноземельные металлы реагируют с жидким и газообразным А., образуя в зависимости от условий Нитриды (Na3N) или амиды (NaNH2). А. реагирует также с серой, галогенами, углем, CO2 и др. К окислителям в обычных условиях А. довольно устойчив, однако, будучи подожжён, он горит в атмосфере кислорода, образуя воду и свободный азот. Каталитическим окислением А. получают окись азота, превращаемую затем в азотную кислоту (См. Азотная кислота).
Получение и применение. В лабораторных условиях А. может быть получен вытеснением его сильными щелочами из аммониевых солей по схеме: 2NH4CI + Ca(OH)2 = 2NH3 + CaCl2 + 2H2O. Старейший промышленный способ получения А. — выделение его из отходящих газов при коксовании (См. Коксование) угля. Основной современный способ промышленного получения А. — синтез из элементов — азота и водорода, предложенный в 1908 немецким химиком Ф. Габером.
Наиболее распространённым и экономичным методом получения технологического газа для синтеза А. является конверсия углеводородных газов. Исходным сырьём в этом процессе служит природный газ, а также попутные нефтяные газы, газы нефтепереработки, остаточные газы производства ацетилена. Сущность конверсионного метода получения азото-водородной смеси состоит в разложении при высокой температуре метана и его гомологов на водород и окись углерода с помощью окислителей — водяного пара и кислорода. К конвертированному газу при этом добавляют атмосферный воздух или воздух, обогащенный кислородом. Синтез А. из простых веществ
протекает с выделением тепла и уменьшением объёма. Наиболее благоприятными, с точки зрения равновесия, условиями образования А. являются возможно более низкая температура и возможно более высокое давление. Без катализаторов реакция синтеза А. вообще не происходит. В промышленности для синтеза А. используют исключительно железные катализаторы, получаемые восстановлением сплавленных окислов железа Fe3O4 с активаторами (Al2O3, K2O, CaO, SiO2, а иногда и MgO). Важный этап процесса синтеза — очистка газовой смеси от каталитических ядов (к ним относятся вещества, содержащие S, O2, Se, P, As, пары воды, CO и др.).
Способы производства синтетического А. различаются по применяемому давлению: системы низкого (10—15 Мн/м 2 ), среднего (25—30 Мн/м 2 ) и высокого (50—100 Мк/л 2 ) давления. Наиболее распространены системы среднего давления (30 Мн/м 2 и 500°С) (1 Мн/м 2 (10 кгс/см 2 ). Для увеличения степени использования газа в современных системах синтеза А. применяют многократную циркуляцию азото-водородной смеси — круговой аммиачный цикл (см. рис.).
Свежий газ (азото-водородная смесь) и непрореагировавшие, т. н. циркуляционные газы поступают сначала в фильтр 1, где они очищаются от посторонних примесей, затем в межтрубное пространство конденсационной колонны 2, отдавая своё тепло газу, движущемуся по трубкам колонны. Далее газы проходят через испаритель 3, в котором происходят их дальнейшее охлаждение и конденсация А., увлечённого циркуляционными газами. Охлажденная смесь газов и сконденсировавшийся А. из испарителя направляются в разделительную часть (сепаратор) конденсационной колонны, где жидкий А. отделяется и как готовый продукт выводится по трубе в резервуар 9. Газообразный А., выходящий из испарителя, проходя брызгоуловитель 4, освобождается от капель жидкого А. и направляется в цех переработки или в холодильную установку на сжижение. Газы, освобожденные от А., из сепаратора поступают в колонну синтеза 5. Колонна синтеза внутри имеет катализаторную коробку с трубчатой или полочной насадкой и теплообменник. Газы, проходя через колонну синтеза, реагируют между собой; выходящая из колонны газовая смесь содержит 15 — 20% А. Далее эти газы поступают в конденсатор 6, где и происходит сжижение А. Жидкий А. отделяется в сепараторе 7 и поступает в резервуар 9, а непрореагировавшие газы подаются циркуляционным насосом 8 в фильтр 1 для смешения со свежей азото-водородной смесью.
А. используется для получения азотной кислоты, азотсодержащих солей, мочевины (См. Мочевина), синильной кислоты (См. Синильная кислота), соды (См. Сода) по аммиачному методу. Так как жидкий А. имеет большую теплоту испарения, то. он служит рабочим веществом холодильных машин. Жидкий А. и его водные растворы применяют как Жидкие удобрения. Большие количества А. идут на аммонизацию Суперфосфата и туковых смесей.
А. ядовит. Он сильно раздражает слизистые оболочки. Острое отравление А. вызывает поражения глаз и дыхательных путей, одышку, воспаление лёгких. Предельно допустимой концентрацией А. в воздухе производственных помещений считается 0,02 г/м 3 . А. хранят в стальных баллонах, окрашенных в жёлтый цвет, с чёрной надписью — А.
Источник