Углерод
Углерод — это, пожалуй, основной и самый удивительный химический элемент на Земле, ведь с его помощью формируется колоссальное количество разнообразных соединений, как неорганических, так и органических. Углерод является основой всех живых существ, можно сказать, что углерод, наравне с водой и кислородом, — основа жизни на нашей планете! Углерод имеет разнообразие форм, которые не похожи ни по своим физико-химическим свойствам, ни по внешнему виду. Но всё это углерод!
История открытия углерода
Углерод был известен человечеству ещё с глубокой древности. Графит и уголь использовались ещё древними греками, а алмазы нашли применение в Индии. Правда, за графит частенько принимали похожие по внешнему виду соединения. Тем не менее, графит имел широкое применение в древности, в частности для письма. Даже его название происходит от греческого слова «графо» — «пишу». Графит сейчас используется в карандашах. Алмазами начали впервые торговать в Бразилии в первой половине 18 века, с этого времени открыто множество месторождений, а в 1970 году была разработана технология получения алмазов искусственным путём. Такие искусственные алмазы применяются в промышленности, натуральные же, в свою очередь, в ювелирном деле.
Углерод в природе
Содержание углерода в земной коре составляет всего около 0,15%. Казалось бы, один из основных элементов, а так мало… На самом деле, углерод подвержен постоянному круговороту из земной коры через биосферу в атмосферу и наоборот. Из углерода состоят природный газ, нефть, уголь, торф, известняки и многие другие соединения.
Наиболее значимое количество углерода собрано в атмосфере и гидросфере в виде углекислого газа. В атмосфере углерода содержится около 0,046%, а еще больше — в растворенном виде в Мировом Океане.
Кроме того, как мы видели выше, углерод является основой живых организмов. Например, в теле человека массой 70 кг содержится около 13 кг углерода! Это только в одном человеке! А углерод содержится также во всех растениях и животных. Вот и считайте…
Аллотропные модификации углерода
Углерод — уникальный химический элемент, который образует так называемые аллотропные модификации, или, проще говоря, различные формы. Эти модификации подразделяются кристаллические, аморфные и в виде кластеров.
Кристаллические модификации имеют правильную кристаллическую решётку. К этой группе относятся: алмаз, фуллерит, графит, лонсдейлит, углеродные волокна и трубки. Подавляющее большинство кристаллических модификаций углерода на первых местах в рейтинге «Самые твёрдые материалы в мире» .
Аморфные формы образованы углеродом с небольшими примесями других химических элементов. Основные представители этой группы: уголь (каменный, древесный, активированный), сажа, антрацит.
Самыми сложными и высокотехнологичными являются соединения углерода в виде кластеров. Кластеры — это особая структура, при которой атомы углерода расположены таким образом, что образуют полую форму, которая заполнена изнутри атомами других элементов, например, воды. В этой группе не так уж и много представителей, в неё входят углеродные наноконусы, астралены и диуглерод.
Применение углерода
Углерод и его соединения имеют огромное значение в жизнедеятельности человека. Из углерода образованы главные виды топлива на Земле — природный газ и нефть. Соединения углерода широко применяются в химической и металлургической промышленности, в строительстве, в машиностроении и медицине. Аллотропные модификации в виде алмазов используют в ювелирном деле, фуллерит и лонсдейлит в ракетостроении. Из соединений углерода изготавливаются различные смазки для механизмов, техническое оборудование и многое другое. Промышленность в настоящее время не может обойтись без углерода, он используется везде!
Источник
Углерод
Углерод — неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.
Общая характеристика элементов IVa группы
От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.
Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец — металлы.
- C — 2s 2 2p 2
- Si — 3s 2 3p 2
- Ge — 4s 2 4p 2
- Sn — 5s 2 5p 2
- Pb — 6s 2 6p 2
Природные соединения
- Аллотропных модификаций — графит, алмаз, фуллерен
- MgCO3 — магнезит
- CaCO3 — кальцит (мел, мрамор)
- CaCO3*MgCO3 — доломит
Получение
Углерод получают в ходе пиролиза углеводородов (пиролиз — нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.
Химические свойства
При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.
2С + O2 → (t) 2CO (угарный газ — продукт неполного окисления углерода, образуется при недостатке кислорода)
С + O2 → (t) CO2 (углекислый газ — продукт полного окисления углерода, образуется при достаточном количестве кислорода)
При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.
Ca + C → CaC2 (карбид кальция, СО углерода = -1)
Al + C → Al4C3 (карбид алюминий, СО углерода -4)
Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.
Углерод — хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:
Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:
SiO2 + C → (t) Si + CO
Может восстановить и собственный оксид:
Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца — крайне важна в промышленности:
В реакциях с кислотами углерод проявляет себя как восстановитель:
Оксид углерода II — СO
Оксид углерода II — продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.
Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.
В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).
В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:
Химические свойства
Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.
FeO + CO → Fe + CO2
Образование карбонилов — чрезвычайно токсичных веществ.
Оксид углерода IV — CO2
Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.
В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.
В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.
Углекислый газ образуется при горении органических веществ:
Химические свойства
- Реакция с водой
В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.
В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние — карбонаты (при избытке основания), кислые — гидрокарбонаты (при избытке кислотного оксида).
2KOH + CO2 → K2CO3 + H2O (соотношение основание — кислотный оксид 2:1)
KOH + CO2 → KHCO3 (соотношение основание — кислотный оксид 1:1)
При нагревании способен окислять металлы до их оксидов.
Zn + CO2 → (t) ZnO + CO
Угольная кислота
Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.
Химические свойства
Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается «закипанием» — появлением пузырьков бесцветного газа без запаха.
Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа — помутнение исчезало.
Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.
Чтобы сделать из средней соли (карбоната) — кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 — ошибка. Ее следует записать в виде воды и углекислого газа.
Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)
Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.
При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты — на карбонат металла, углекислый газ и воду.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Соединения углерода — формулы, свойства и применение
Есть еще одна модификация — аморфный углерод. Это пористое вещество черного цвета. Его «известные представители» — кокс, сажа, древесный и костяной уголь. В чистом виде не встречается, всегда содержит примеси.
В связанном состоянии углерод встречается в карбонатах (кальцит, известняк, мел, мрамор, железный шпат FeCO3, марганцевый шпат MnCO3, цинковый шпат ZnCO3, магнезит, доломит, малахит, и прочие). Кроме того, углерод — основная составная часть каменных и других углей, нефти, горючих природных газов, всех живых организмов.
Основные свойства
Углерод инертен по отношению ко всем обычным растворителям. Исключение — некоторые расплавленные металлы. Однако после остывания он снова кристаллизуется в графит.
При нормальных условиях более химически активный только черный углерод. Он может соединяться со фтором, а при повышении температуры — с водородом, кремнием, серой, бором и некоторыми другими металлами. В результате реакции образуются карбиды:
- 4Al + 3C → Al4C3.
- Ca + 2C → CaC2.
При взаимодействии карбидов с водой или кислотой образуется метан или ацетилен:
- Al4C3 + 12HCl → 4AlCl3 + 3CH4 (метан).
- CaC2 + 2H2O → C2H2 (ацетилен) + Ca (OH)2 (гидроксид кальция).
Ряд карбидов имеет состав, который не подчиняется «общепринятому» представлению о валентности. К таким относится, например, Fe3C.
С азотом углерод не соединяется, но в присутствии водорода образует циановодород (формула вещества HCN). В реакциях с кислородом он образует монооксид и диоксид, при этом выделяется большое количество тепла:
- C + O2 → CO2.
- монооксид чаще всего выделяется при пропускании диоксида над раскаленным углем: CO2 + C → 2CO.
Углерод — один из наиболее сильных восстановителей, известных в химии. При взаимодействии с оксидами металлов он «отнимает» у них кислород, восстанавливая при этом вещества до свободного состояния:
- ZnO + C → Zn + CO.
- SiO2 +2C → Si + 2CO.
При взаимодействии избытка углерода с диоксидом кремния (кварцем, песком), кроме чистого Si, образуется карборунд (окись кремния) — очень твердое вещество: SiO2 + 3C → SiC + 2CO.
С галогенами «чистый» углерод не взаимодействует. Соединения с ними образуются из других веществ (например, углеводородов).
Углеродные соединения
В начале XIX века вещества были разделены на неорганические и органические. Ко второй группе относятся углеводороды (метановый, этиленовый и ацетиленовый ряды), белки, углеводы, жиры. Изучением этих веществ занимается органическая химия.
Неорганическая химия изучает другие соединения углерода: галогениды, цианиды, карбиды, оксиды. Наиболее значимыми являются кислородсодержащие вещества — CO, CO2. Есть еще C2O (окись диуглерода) и C3O2 (недооксид), но это пока не слишком изученные вещества.
Монооксид или угарный газ
Оксид углерода 2 (другое название монооксида) — образуется при неполном сгорании C, или продуктов, его содержащих. Его основные свойства:
- Сжижается при температуре — 192 °C.
- Затвердевает при t=-205°С.
- Молекулярная масса — 28,01 г/моль.
- Строение молекулы — линейное (в рамках теории валентных связей ее можно записать как «:C==O:»).
- В воде практически нерастворим.
Монооксид — ядовитый газ, не имеющий цвета и запаха. Его отравляющее действие состоит в том, что он необратимо взаимодействует с гемоглобином крови, в результате чего полностью утрачивается способность переносить кислород от легких к тканям.
В промышленности монооксид получают в процессе газификации твердого топлива. В лаборатории синтезировать соединение можно путем воздействия концентрированной серной кислоты на щавелевую (C2H2O4) или муравьиную (HCOOH). Реакция протекает при нагревании:
- HCOOH → CO + H2O.
- C2H2O4 → CO + CO2 + H2O.
По химическим свойствам двухвалентный оксид — хороший восстановитель. Он отлично горит, выделяя при этом большое количество тепла: 2CO + O2 → 2CO2. Другие характерные признаки:
- Способность «изымать» кислород из его соединений с металлами: FeO + CO → Fe + CO2.
- В присутствии активированного угля, выступающего в роли катализатора, окись углерода со степенью окисления +2, способна присоединять хлор (Cl), образуя при этом фосген (COCL2) — боевое отравляющее вещество. Представляет собой бесцветный, высокотоксичный газ с запахом прелого сена. Уравнение реакции получения: CO + Cl2 → COCl2.
- При высоких температурах (выше 400°C) и повышенном давлении (300 атм) реагирует с водородом. В результате процесса образуется метиловый спирт (метанол): CO + 2H2 → CH3OH.
- При повышенных температурах взаимодействует со щелочами, образуя при этом соли муравьиной кислоты (HCOOH): CO + NaOH → HCOONa.
- При взаимодействии с аммиаком образуется синильная кислота — очень ядовитое вещество: CO + NH3 → HCN + H2O.
Угарный газ находит широкое практическое применение. Он входит в состав искусственного газообразного топлива. Кроме того, незаменим при процессах органического синтеза.
Диоксид углерода или CO2
Это газ, не имеющий цвета, обладающий слабым кисловатым запахом и вкусом. Молярная масса равна 44.01 г/моль.
Примечание: оксид углерода 4 в полтора раза тяжелее воздуха, поэтому его можно «переливать» из пробирки в пробирку.
Углекислый газ (еще одно название диоксида углерода) не поддерживает горения. Кроме того, он делает невозможным дыхание: в комнате, где концентрация вещества будет высокой, человек задохнется. Какие свойства присущи соединению:
- В углекислом газе могут гореть некоторые вещества, образующие с кислородом более прочную связь, нежели углерод (например, магний): 2Mg + CO2 → 2MgO + C.
- Реакция горения с раскаленным углем: CO2 + C → 2CO.
- Взаимодействие с водой: CO2 + H2O → H2CO3 (угольная кислота).
- Образует кислотные оксиды при взаимодействии с основными оксидами: Na2O + CO2 → Na2CO3 (карбонат натрия).
- При недостатке щелочи образует гидрокарбонаты: CO2 + NaOH → NaHCO3.
В промышленности диоксид углерода синтезируют путем термического разложения известняка или мела (иногда доломита, магнезита): CaCO3 → CaO + CO2. Также это вещество можно выделить из коксового газа, при сжигании угля, торфа, нефтепродуктов, древесины. Кроме того, он содержится и в природных источниках: например, «появляется» в результате вулканической деятельности, при распаде органических веществ.
В лабораторных условиях его получают при взаимодействии CaCO3 и соляной кислоты: CaCO3 + 2HCl → CaCL2 + CO2 + H2O (реакция проводится в аппарате Киппа). Другой способ — прокаливание гидрокарбоната натрия: NaHCO3 → Na2CO3 + CO2 + H2O.
Углекислый газ имеет промышленное значение: он необходим в содовом производстве, в пищевой промышленности (изготовление газированных напитков), для синтеза органических кислот. Сухой лед (твердый диоксид) используется в качестве хладагента — углекислая среда предотвращает продукты питания от разложения. Кроме того, CO2 применяется и в медицине (углекислотные ванны для активизации метаболических функций). Незаменим он и для сельского хозяйства — оксид углерода IV участвует в фотосинтезе, поэтому его недостаток негативно сказывается на растениях.
Источник
Углерод в природе, где он находится и как, свойства, использование
углерод в природе это может быть найдено в алмазах, нефти и граффити, среди многих других сценариев. Этот химический элемент занимает шестое место в периодической таблице и находится в горизонтальном ряду или периоде 2 и столбце 14. Он неметаллический и четырехвалентный; то есть вы можете установить 4 химические связи общих электронов или ковалентных связей.
Углерод — это элемент с наибольшим изобилием в земной коре. Это изобилие, его уникальное разнообразие в образовании органических соединений и его исключительная способность образовывать макромолекулы или полимеры при температурах, обычно встречающихся на Земле, делают его общим элементом всех известных форм жизни.
Углерод существует в природе как химический элемент без объединения в форме графита и алмаза. Тем не менее, по большей части он объединяется с образованием химических соединений углерода, таких как карбонат кальция (CaCO).3) и другие соединения в нефти и природном газе.
Он также образует несколько минералов, таких как антрацит, уголь, лигнит и торф. Наибольшее значение углерода заключается в том, что он представляет собой так называемый «строительный блок жизни» и присутствует во всех живых организмах..
- 1 Где находится углерод и в какой форме?
- 1.1 Кристаллические формы
- 1.2 Аморфные формы
- 1.3 Нефть, природный газ и битум
- 2.1 Химический символ
- 2.2 Атомный номер
- 2.3 Физическое состояние
- 2,4 Цвет
- 2.5 Атомная масса
- 2.6 Точка плавления
- 2.7 Точка кипения
- 2.8 Плотность
- 2.9 Растворимость
- 2.10 Электронная конфигурация
- 2.11 Количество электронов во внешнем или валентном слое
- 2.12 Емкость канала
- 2.13 Катенасьон
- 3.1 Фотосинтез
- 3.2 Дыхание и разложение
- 3.3 Геологические процессы
- 3.4 Вмешательство человеческой деятельности
- 4.1 Нефть и природный газ
- 4.2 Графит
- 4.3 Алмаз
- 4.4 Антрацит
- 4.5 каменный уголь
- 4.6 лигнит
- 4.7 Торф
Где находится углерод и в какой форме?
Помимо того, что он является химическим компонентом, общим для всех форм жизни, углерод в природе присутствует в трех кристаллических формах: алмаз, графит и фуллерен..
Есть также несколько аморфных минеральных форм угля (антрацит, лигнит, уголь, торф), жидких форм (разновидности масел) и соды (природный газ)..
Кристаллические формы
В кристаллических формах атомы углерода объединяются, образуя упорядоченные структуры с геометрическим пространственным расположением.
графит
Это мягкий сплошной черный цвет с блеском или металлическим блеском теплостойким (огнеупорным). Его кристаллическая структура представляет собой атомы углерода, соединенные в гексагональные кольца, которые, в свою очередь, соединяются вместе, образуя листы.
Месторождения графита редки и были обнаружены в Китае, Индии, Бразилии, Северной Корее и Канаде..
бриллиант
Это очень твердое твердое вещество, прозрачное для прохождения света и намного более плотное, чем графит: значение плотности алмаза эквивалентно почти в два раза больше, чем у графита.
Атомы углерода в алмазе соединяются в тетраэдрической геометрии. Аналогично, алмаз сформирован из графита, подвергнутого условиям очень высоких температур и давлений (3000 ° С и 100 000 атм).
Большая часть алмазов находится на глубине от 140 до 190 км в мантии. Через глубокие извержения вулканов магма может переносить их на расстояния, близкие к поверхности.
Алмазные месторождения имеются в Африке (Намибия, Гана, Демократическая Республика Конго, Сьерра-Леоне и Южная Африка), Америке (Бразилия, Колумбия, Венесуэла, Гайана, Перу), Океании (Австралия) и Азии (Индия)..
фуллерены
Это молекулярные формы углерода, которые образуют кластеры из 60 и 70 атомов углерода в почти сферических молекулах, похожих на футбольные мячи.
Есть также фуллерены, меньшие, чем 20 атомов углерода. Некоторые формы фуллеренов включают углеродные нанотрубки и углеродные волокна.
Аморфные формы
В аморфных формах атомы углерода не объединяются, образуя упорядоченную и правильную кристаллическую структуру. Вместо этого они даже содержат примеси от других элементов.
антрацит
Это самый старый метаморфический минеральный уголь (который происходит от модификации горных пород под воздействием температуры, давления или химического воздействия жидкостей), поскольку его образование относится к первичной или палеозойской эре, каменноугольному периоду..
Антрацит — это аморфная форма углерода, в которой содержание этого элемента выше: от 86 до 95%. Серо-черный и металлический глянец, тяжелый и компактный.
Как правило, антрацит находится в зонах геологической деформации и составляет приблизительно 1% мировых запасов угля..
Географически он встречается в Канаде, США, Южной Африке, Франции, Великобритании, Германии, России, Китае, Австралии и Колумбии..
Каменный уголь
Это минеральный уголь, осадочная порода органического происхождения, образование которой относится к эпохам палеозоя и мезозоя. Содержание углерода составляет от 75 до 85%..
Это черный, он характеризуется непрозрачностью и имеет матовый и жирный вид, так как он содержит большое количество битумных веществ. Образуется при сжатии лигнита в палеозойскую эру, в каменноугольный и пермский периоды..
Это самая распространенная форма угля на планете. В Соединенных Штатах, Великобритании, Германии, России и Китае имеются крупные месторождения угля..
бурый уголь
Это ископаемый минеральный уголь, образовавшийся в третичном возрасте из торфа при сжатии (высокие давления). Он имеет более низкое содержание углерода, чем уголь, от 70 до 80%.
Это немного компактный материал, рассыпчатый (характеристика, которая отличает его от других углеродных минералов), коричневый или черный. Его текстура похожа на древесину, а содержание углерода колеблется от 60 до 75%..
Это топливо с легким воспламенением, с низкой теплотворной способностью и более низким содержанием воды, чем торф.
В Германии, России, Чехии, Италии (в регионах Венето, Тоскана, Умбрия) и Сардинии имеются важные шахты с бурым углем. В Испании месторождения лигнита находятся в Астурии, Андорре, Сарагосе и Ла-Корунья.
торф
Это материал органического происхождения, образование которого происходит из четвертичной эры, гораздо более поздней, чем предыдущие угли..
Это коричневато-желтый цвет и выглядит как губчатая масса низкой плотности, в которой вы можете увидеть остатки растений от того места, где они произошли.
В отличие от перечисленных выше углей, торф не происходит в результате процессов карбонизации древесного материала или дерева, а образуется в результате скопления растений — в основном трав и мхов — в болотистых районах в результате процесса карбонизации, который еще не завершен..
Торф имеет высокое содержание воды; по этой причине требует использования сушки и уплотнения перед использованием.
Имеет низкое содержание углерода (всего 55%); следовательно, он имеет низкую энергетическую ценность. Когда он подвергается сгоранию, его остаток золы в изобилии и выделяет много дыма.
Существуют важные месторождения торфа в Чили, Аргентине (Огненная Земля), Испании (Эспиноса-де-Серрато, Паленсия), Германии, Дании, Голландии, России, Франции..
Нефть, природный газ и битум
Масло (с латыни Petrae, что означает «камень»; и олеум, что означает «нефть»: «каменная нефть») представляет собой смесь многих органических соединений — большинства углеводородов, — образующихся в результате анаэробного бактериального разложения (в отсутствие кислорода) органического вещества..
Он образовался в недрах, на больших глубинах и в особых условиях, как физических (высокие давления и температуры), так и химических (присутствие определенных каталитических соединений) в процессе, который занял миллионы лет.
Во время этого процесса C и H высвобождались из органических тканей и снова объединялись, образуя огромное количество углеводородов, которые смешиваются в соответствии с их свойствами, образуя природный газ, нефть и битум..
Нефтяные месторождения планеты расположены в основном в Венесуэле, Саудовской Аравии, Ираке, Иране, Кувейте, Объединенных Арабских Эмиратах, России, Ливии, Нигерии и Канаде..
Есть запасы природного газа в России, Иране, Венесуэле, Катаре, Соединенных Штатах, Саудовской Аравии и Объединенных Арабских Эмиратах, среди других..
Физико-химические свойства
Среди свойств углерода можно отметить следующие:
Химический символ
С.
Атомный номер
6.
Физическое состояние
Твердый, при нормальных условиях давления и температуры (1 атмосфера и 25 ° C).
цвет
Серый (графит) и прозрачный (алмаз).
Атомная масса
Точка плавления
Точка кипения
плотность
растворимость
Нерастворим в воде, растворим в четыреххлористом углероде CCl4.
Электронная конфигурация
Количество электронов во внешнем слое или валентности
4.
Пропускная способность
4.
сцепление
Обладает способностью образовывать химические соединения в длинных цепях..
Биогеохимический цикл
Углеродный цикл представляет собой круговой биогеохимический процесс, посредством которого углерод может обмениваться между биосферой, атмосферой, гидросферой и земной литосферой..
Знание этого циклического углеродного процесса на Земле позволяет продемонстрировать действия человека в этом цикле и его последствия для глобального изменения климата..
Углерод может циркулировать между океанами и другими водоемами, а также между литосферой, почвой и недрами, атмосферой и биосферой. В атмосфере и гидросфере углерод существует в газообразной форме в виде СО2 (углекислый газ).
фотосинтез
Углерод в атмосфере поглощается наземными и водными организмами экосистем (фотосинтезирующими организмами)..
Фотосинтез позволяет химической реакции между СО происходить2 и вода, опосредованная солнечной энергией и хлорофиллом из растений, для производства углеводов или сахаров. Этот процесс превращает простые молекулы с низким содержанием энергии CO2, H2O и кислород O2, в сложных молекулярных формах высокой энергии, которые являются сахарами.
Гетеротрофные организмы, которые не могут осуществлять фотосинтез и являются потребителями в экосистемах, получают углерод и энергию при питании самих производителей и других потребителей..
Дыхание и разложение
Дыхание и разложение — это биологические процессы, которые выделяют углерод в окружающую среду в форме CO2 или СН4 (метан образуется при анаэробном разложении, то есть в отсутствие кислорода).
Геологические процессы
В результате геологических процессов и, как следствие, с течением времени, углерод анаэробного разложения может превращаться в ископаемое топливо, такое как нефть, природный газ и уголь. Кроме того, углерод также является частью других минералов и горных пород..
Вмешательство человеческой деятельности
Когда человек использует сжигание ископаемого топлива для получения энергии, углерод возвращается в атмосферу в виде огромных количеств СО2 которые не могут быть ассимилированы естественным биогеохимическим циклом углерода.
Это избыток СО2 вызванный деятельностью человека отрицательно влияет на баланс углеродного цикла и является основной причиной глобального потепления.
приложений
Использование углерода и его соединений чрезвычайно разнообразно. Наиболее выдающийся со следующим:
Нефть и природный газ
Основное экономическое использование углерода заключается в его использовании в качестве углеводородного ископаемого топлива, такого как газообразный метан и нефть..
Масло перегоняется на нефтеперерабатывающих заводах для получения различных производных, таких как бензин, дизельное топливо, керосин, асфальт, смазочные материалы, растворители и другие, которые, в свою очередь, используются в нефтехимической промышленности, которая производит сырье для пластмасс, удобрений, фармацевтической и лакокрасочной промышленности. среди прочих.
графит
Графит используется в следующих действиях:
— Используется при изготовлении карандашей, смешанных с глинами.
— Это часть производства огнеупорных кирпичей и тиглей, термостойких.
— В различных механических устройствах, таких как шайбы, подшипники, поршни и прокладки.
— Это отличная твердая смазка.
— Из-за его электрической проводимости и его химической инертности, он используется в производстве электродов, углей электродвигателей..
— Используется в качестве модератора на атомных электростанциях.
бриллиант
Алмаз обладает особенно исключительными физическими свойствами, такими как более высокая степень твердости и теплопроводность, известные до сих пор..
Эти особенности позволяют промышленное применение в инструментах, используемых для резки и полировки инструментов для их высокой абразивности.
Его оптические свойства, такие как прозрачность и способность расщеплять белый свет и преломлять свет, дают ему множество применений в оптических приборах, например, в производстве линз и призм..
Характерная яркость, полученная из его оптических свойств, также очень ценится в ювелирной промышленности..
антрацит
Антрацит с трудом поджигается, медленно горит и требует много кислорода. Его сгорание производит небольшое пламя бледно-синего цвета и выделяет много тепла.
Несколько лет назад антрацит использовался в термоэлектростанциях и для отопления домов. Его использование имеет такие преимущества, как производство небольшого количества золы или пыли, небольшое количество дыма и медленный процесс сгорания..
Из-за высокой экономической стоимости и дефицита антрацит был заменен природным газом на термоэлектростанциях и электроэнергией в домах..
Каменный уголь
Уголь используется в качестве сырья для получения:
— Кокс, топливо из доменных печей сталелитейных заводов.
— Креозот, полученный путем смешивания смолистых дистиллятов из каменного угля и используемый в качестве защитного герметика для древесины, подверженной атмосферным воздействиям.
— Крезол (химически метилфенол) извлекают из угля и используют в качестве дезинфицирующего и антисептического средства,
— Другие производные, такие как газ, смола или смола, а также соединения, используемые в производстве парфюмерии, инсектицидов, пластмасс, красок, шин и дорожных покрытий, среди прочих.
бурый уголь
Лигнит представляет собой топливо среднего качества. Струя, разновидность лигнита, характеризуется очень компактным из-за длительного процесса карбонизации и высокого давления и используется в ювелирном деле и украшении..
Источник
Углерод в природе; его опасность и сферы применения
В природе углерода не так уж и много, но он есть везде: в воздухе (углекислый газ и угарный газ), растворен в океанах и реках, залегает в ископаемых породах в земле, содержится в каждой клетке растения, животного, человека. Существует круговорот углерода в природе:
— углекислый газ выделяется в атмосферу с вулканическими газами, из горячих источников, из поверхностных слоев рек и океанов, при сгорании топлив, при дыхании растений и животных;
— в тоже время, углекислый газ поглощается растениями, переходит в организм животных и людей, а после их смерти возвращается в почву.В чистом виде и в значимых количествах углерод встречается только в виде алмазов и графитов. Но он — составная часть ископаемого топлива (уголь, нефть, газ, сланцы), торфа, битумов, природных минералов (мел, известняк, доломиты, карбонаты).
Токсическое действие
При разработках угольных месторождений, при сжигании топлив, в процессе деятельности человека в воздух поступает большое количество аэрозолей углерода, попадающих в органы дыхания человека и животных. Регулярное вдыхание аэрозолей с высокой концентрацией углерода приводят к таким заболеваниям, как пылевой бронхит, антракоз. На всех производствах, связанных с углеродными аэрозолями и пылью, обязательно нормируется ПДК содержания алмазов, кокса, угля, углеродной пыли, сажи и др. Работники обязательно должны использовать средства защиты органов дыхания при работе с ними.
Угарный газ и углекислый газ обладают токсическим действием, превышение ПДК этих газов в воздухе может вызвать летальный исход. Поэтому в закрытых помещениях большое внимание должно уделяться поглощению и удалению из воздуха углекислоты, выделяемой при дыхании.
Токсическим действием обладает радиоактивный изотоп С-14. Встраиваясь в молекулы белков, особенно в ДНК и РНК, он может оказывать мутагенное воздействие, поэтому для него тоже установлены ПДК содержания в воздухе рабочего помещения.
Применение
Нет ни одной области промышленности, в которой в той или иной степени не использовался бы углерод. Расскажем об основных сферах его использования:
• Основные виды ископаемого топлива на земле: нефть, уголь и газ — это соединения углерода. Они нужны для получения тепла, энергии, огромного количества химических материалов.
• В сельском хозяйстве, в медицине, энергетике, в ядерной отрасли.
• В промышленной индустрии очень востребованы карбонаты.
• Графит используется при изготовлении карандашей, электродов, высокотемпературных и низкотемпературных смазок, красителей; тиглей для металлических заготовок, углепластиков, углеродных волокон, стеклоуглерода и других углеграфитовых материалов, отличающихся особо высокой жаростойкостью.
• Стеклоуглерод идет на производство тиглей и электродов.
• Техуглерод применяется как наполнитель при производстве резин для шин и пластмасс. Придает им прочность, долговечность и некоторые особые свойства.
• Алмазы применяются в технике, сверлении, лазерных установках, в ювелирном деле. Технические алмазы используются для получения абразивных материалов. Только сложность обработки и высокая стоимость мешают алмазам стать лучшим материалом для подложек процессоров.
• В медицине используется активированный уголь для вывода токсинов, а графит — в мазях для лечения болезней кожи.
• Фильтры на основе угля применяются в противогазах, респираторах, лицевых масках и сменных патронах для них; системах очистки воды.
• В научных исследованиях радиоуглеродный анализ на основе изотопа С-14 — один из самых важных анализов в археологии, геологии, палеонтологии.
• Большие перспективы у применения новых неорганических материалов на основе углерода. Об этом — следующая статья.Источник